白矮星的光谱属於A型,是高温、体积小的致密星,即使大小如地球般,质量已介乎於十分之三及一.四个太阳质量间,密度是水的十万倍。现时大约测度到一千多 颗白矮星,白矮星是恒星演化晚期归宿之一,我们的太阳终归是走上这一条路途的。白矮星会变成宇宙中最大的钻石:2004年2月宣布了白矮星内部结晶成巨大钻石的第一个直接证据。对BPM 37093脉动的观察使来自美国麻萨诸塞州剑桥市哈佛-史密森天体物理学中心的天文学家可以推断出这一点。 碳白矮星已经结晶成直径约4000公里(2500英里)的钻石。
一白矮星(White Dwarf)是一种低光度、高密度、高温度的恒星。因为它的颜色呈白色、体积比较矮小,因此被命名为白矮星。表面温度8000K,发出白光,可有几十亿年寿命。白矮星是演化到末期的恒星,主要由碳构成,外部覆盖一层氢气与氦气。白矮星在亿万年的时间里逐渐冷却、变暗,它体积小,亮度低,但密度高,质量大。
人们已经观测发现的白矮星有1000多颗。天狼星(Sirius)的伴星是第一颗被人们发现的白矮星,也是所观测到的最亮的白矮星(8等星),它的密度在1000万吨/立方米左右,体积比地球大不了多少,但质量却和太阳差不多。
1982年出版的白矮星星表表明,银河系中有488颗白矮星,它们都是离太阳不远的近距天体。根据观测资料统计,大约有3%的恒星是白矮星,但理论分析与推算认为,白矮星应占全部恒星的10%左右。
二白矮星属于演化到晚年期的恒星,恒星在演化后期,抛射出大量的物质,经过大量的质量损失后,如果剩下的核的质量小于1.44个太阳质量,这颗恒星便演化成为白矮星。对白矮星的形成也有人认为,白矮星的前身是行星状星云(是宇宙中由高温气体、少量尘埃等组成的环状或圆盘状的物质),它的中心通常都有一个温度很高的恒星——中心星,它的核能源已经基本耗尽,整个星体开始慢慢冷却、晶化,直至最后“死亡”。
电子简并压与白矮星强大的重力平衡,维持着白矮星的稳定。当白矮星质量进一步增大,电子简并压就有可能抵抗不住自身的引力收缩,白矮星还会坍缩成密度更高的天体:中子星或黑洞。对单星系统而言,由于没有热核反应来提供能量,白矮星在发出光热的同时,也以同样的速度冷却着。经过数千亿年的漫长岁月,年老的白矮星将渐渐停止辐射而死去。它的躯体变成一个比钻石还硬的巨大晶体——黑矮星。
对于多星系统,白矮星的演化过程则有可能被改变(例如双星)。
三第一颗被发现的白矮星是三合星的波江座 40,它的成员是主序星的波江座 40A,和在一段距离外组成联星的白矮星波江座 40B和主序星的波江座 40C。波江座 40B和波江座 40C这一对联星是威廉·赫歇尔在1783年1月31日发现的,它在1825年再度被Friedrich Georg Wilhelm Struve观测,1851年被Otto Wilhelm von Struve观测。
在1910年,亨利·诺瑞斯·罗素、爱德华·皮克林和威廉·佛莱明发现他有一颗黯淡不起眼的伴星,而波江座 40B的光谱类型是A型或是白色。
1892年,Alvan Graham Clark发现了天狼星的伴星。根据对恒星数据的分析,这个伴星的质量约一个太阳质量,表面温度大约25000K,但是其光度大约是天狼星的万分之一,所以根据光度和表面积的关系,推断出其大小与地球相当。这样的密度是地球上的物质达不到的。1917年,Adriaan Van Maanen发现了目前已知离太阳最近的白矮星Van Maanen星。
1917年,范·马南发现了一颗孤独的白矮星,被称为范马南星。这三颗白矮星,最早发现的,是所谓的经典的白矮星。终于,有许多的黯淡的白色恒星被发现,它们都有高自行,表示都是紧邻地球的低光度天体,因此都是白矮星。 威廉·鲁伊登在1922年要说明这种天体时,似乎是第一个使用白矮星这个名词的人,稍后这个名词经亚瑟·爱丁顿而通俗化了。
在二十世纪初由Max Planck等人发展出量子理论之后,Ralph H. Fowler于1926年建立了一个基于费米-狄拉克统计的解释白矮星的密度的理论。
1930年,苏布拉马尼扬·钱德拉塞卡(印度)发现了白矮星的质量上限(钱德拉塞卡极限),并因此获得1983年的诺贝尔物理学奖。
尽管有各种的怀疑,第一颗非经典的白矮星大约直到1930年代才被辨认出来。在1939年已经发现了18颗白矮星,在1940年代,鲁伊登和其他人继续研究白矮星, 到1950年发现已经超过一百颗的白矮星,到了1999年,这个数目已经超过2000颗之后的史隆数位巡天发现的白矮星就超过9000颗,而绝大多数都是新发现的。