《数学之美》读后感5篇1200、1500、1600字

文教艺术2023-02-06 21:55:28百科知识库

《数学之美》读后感5篇1200、1500、1600字

整理了读《数学之美》有感、数学之美读后感(1219字)、《数学之美》读后感(1223字)等1200字、1500字、1600字左右的精选读后感5篇,供您参阅。

数学之美读后感_1219字

看到吴军的另一本书《数学之美》,激起了很深的兴趣,所以很快把书看完了,普及了很多基础的知识的同时也启发了很多想法,感觉很爽。

我自己在交大学的是工科(虽然没怎么上过课),小学、初中、高中都是一路参加数学竞赛,名次都还不错,也因此没有参加中考、高考,一路保送,自己对数学有很深的感情,同时女朋友大学也是数学系,有点后悔的大学选了个并不感兴趣的专业(交大当时允许我随便选专业,我没有跟父母商量自己选了船舶制造)。看这本书的过程中找到了很多高中在看竞赛书的感觉,里面提到的很多概率论(不等式)、图论、数论的知识是高中数学联赛复试的重点,高中的时候已经研究的很深了,不过大学荒废了之后也忘得差不多了,书中提到的很多定理还很有亲切感

书名叫做《数学之美》,显得有些太大,毕竟更多的是吴军在google做搜索相关工作用到的数学模型的介绍与总结,提到的数学部分大多集中在概率论、图论、数论领域,所以书名太大了,可能hax说得对,也许是出版社为了卖书取得名字

不得不说吴军是一个大家,文字中能够透露出大家的气势,书中不断的穿插着各种历史上的大科学家以及科技领域的大家的小故事甚至八卦,从文字中非常能够感受到吴军是一个和他们一个层次的人(即使他自己会自谦说是一个二流的工程师之类)

书中具体的模型就不介绍了,说几点我学到的知识(仅仅皮毛),能列出来的都是看完还有点印象的:

1.在互联网的世界中,信息是如何量化的,信息熵是怎么回事?有啥用?

2.搜索领域中,语言是如何统计的,尤其是如何通过概率模型进行分词

3.搜索引擎是如何工作的—网络爬虫是怎么回事儿

4.PageRank是怎么回事?为了解决什么问题?

5.密码与解密领域的数学模型,尤其提到的二战时候的各种解密的趣事儿,提到的电视剧《暗算》打算抽空看下

6.拼音输入法的数学模型

7.、文本自动分类的模型

……

看完之后最大的感受就是:

1.数学模型巨大作用,推动着新技术的发展

2.攻城师是一个伟大的职业,能够运用这些知识转化为生产力,非常牛叉

3.书中提到了很多数学模型都是在不断的进化、改良、升级,也就是说有人不断的在做优化,会有不断更好的模型、更新的技术出现,跟得上技术的发展可能也是比较重要的,否则很多人一直在做某一点上的持续优化就没有意义了。

但同时技术很大的作用是用来解决实际问题的,书中提到的各个数学模型、各种方法都是为了解决人们的需求或者业务的需求,毕竟公司不是科学研究所,所以追求通过技术直接解决用户需求或者做成易用的工具给业务人员、运营人员来间接解决用户需求是挺重要的,可能不是技术人员觉得做到80分就可以了,而是用户、使用工具的人觉得做到80分是一个重要的衡量

提到“工具”,想到赵赵说过的一句话:“不好用就等于没有”,可能就是这个点,同时运用工具的人必须好好的运用,如果用不好甚至不用就太对不起技术了。

成语对不起:表示抱歉的客套话。如:曾朴《孽海花》第30回:“明明雯青为自己而死,自己实在对不起雯青,人非木石,岂能漠然!”又如:对不起,我关上窗子,你不反对吧?。

《数学之美》读后感_1223字

几年前,我还在读大二的时候,有一次在图书馆随意找书,无意中发现了这本《数学之美》,看到书名之后,我以为这是一本纯粹讲解数学的书籍,由于我对数学的理论和计算兴趣并不大,但是我对于数学的发展史、数学的思维方法以及那些有趣的数学家的故事感兴趣。所以当我仅仅看到这个书名之后,我想从中找到这些有趣的东西,但是看到第二章的时候,我就没有了兴趣,当时只觉得书中罗里吧嗦讲了一堆数学在IT各个领域的应用,于是就放下了。

后来自己也从事了IT行业,并且接触到了很多人工智能的概念和技术知识,知道了了机器学习、深度学习、自然语言处理等等。于是就想起来曾经在大学看过一本《数学之美》的书籍,里边大概写了一些IT领域的数学知识,于是前一段时间在回家的火车上带着这本书看完了。

现在我来谈谈自己读完的感想。

首先我谈谈这本书好的地方:

第一、作者使用一些有趣的例子讲明白了晦涩的专业知识。比如说作者在第六章,使用竞彩足球队夺冠的例子,形象的说明了信息的含义和信息熵的含义。诸如这些有趣的例子,我觉得可以作为初学通信专业学生的科普教材。

第二、作者讲述了自然语言处理领域中的大牛人物,这样针对专业领域杰出人物的介绍常常更容易引起学生的兴趣,所谓榜样的力量是无穷的。比如对自然语言领域的大牛人物——弗里德里克贾里尼克(FrederekJelinek)的介绍。我个人觉得,当前工科大学中对于这一类的故事讲解太少,以为的讲解专业知识太过于枯燥,另外,很多专业知识,只要本书写的很详细学生都能看懂,无需讲解。多分享一些前任的工作方法和、经历和事迹,更能从情感上调动学生的积极性。

本书也有很多缺点,第一、以我来看,本书依然是一本专业性的书籍,不适合非IT专业的学生阅读,书中还是存在大量的数学公式和知识,没有一定的专业基础根本读不下去。

第二、本书取名《数学之美》,书名太大,并没有从数学的角度讲解数学之美,而主要从IT领域讲解数学的应用,更多的是概率论的应用。

最后我的看法是,本书作为IT专业领域的学生科普书籍很不错,相比教材来说有趣了不少,也能让读者了解到行业发展的情况。不单单的去学习一些枯燥的专业知识,还要去了解这门技术的来龙去脉,以及未来的发展方向。所以推荐学习电子信息类专业的学生阅读。结合作者在Google的经历,用浅显易懂的语言解释了以上数学分支在文本挖掘(自然语言分析,分词,语义分析),网络爬虫,密码学,搜索引擎等工作原理,可作为这些方面的入门之作,值得一读。

另外、我看完最大的收获就是,知道了原来这个世界是由这些人创造了这些有趣知识,知道了原来这些听起来高大上的技术知识,是这么发展来的,知道了原来学过的那些数学知识,是用在了什么地方!比如以前学习概率论的时候,只知道到计算盒子里边的黑球和白球(教科书中的例子真是又幼稚,又无趣),知道了更多人的故事,看见了更多的世界!所以呢,本书还是值得画上两三个小时概略读一读的。

成语来龙去脉:来龙去脉[lái lóng qù mò],意指本是堪舆家用以形容山脉河流走向的术语,後用以比喻事情的首尾始末。语或出明·无名氏《运甓记·第一三出》。[源] 明·无名氏《运甓记·第一三出》老汉虽系村农,颇谙地理。此间前冈有块好地,来龙去脉,靠岭朝山,种种合格,乃大富贵之地。[典故]堪舆家就是风水家,称山脉的起伏为“龙”,其主峰称为“来龙”;山谷中的溪流称为“脉”,而其主流则称为“去脉”。“来龙去脉”指从头到尾像脉管一样连贯着的地势。在明·无名氏《运甓记·第一三出》中,陶侃为了葬母,四处寻找墓地,恰巧遇见一个懂得堪舆术的老翁,指点他一块靠岭朝山的富贵之地时,就有此说法。後来“来龙去脉”被引申用来比喻事情的首尾始末。

成语浅显易懂:浅显:浅近明显。道理或寓意浅显,容易理解、明白。如:宽严相济其政乃安,这本是浅显易懂的道理,可王士俊之流就偏要曲解,想以不孝之名加罪于朕。——二月河《乾隆皇帝》二十七

数学之美读后感_1463字

读完这本书有一点强烈的感受:工具一定要先进。数学是强大的工具,计算机也是。这两种工具结合在一起,造就了强大的google、百度、亚马逊、阿里、京东、腾迅等公司。他们不是百年老店,但他们掌握了先进的工具。

掌握了先进的工具,必将获得竞争优势。如果你知道哪里有一群软件工程师,维护着更大的一群计算机,那么不要犹豫,想办法使用他们提供的服务,因为这会给你带来优势。所以我们使用Google的搜索和邮件,在亚马逊、京东和淘宝上购物,用QQ和微博联系朋友,使用银行卡和网上银行,利用交易终端在全球市场上进行各种交易……

人类历史就是一部工具的进化史。石器、青铜、铁器、火药、蒸汽机、内燃机、电报、电话、电视、计算机、卫星、互联网,工具的进步引领着文明的进步。新的工具不断淘汰老的工具,就像互联网视频点播正在淘汰电视、微博正在淘汰报纸、电子书正在淘汰纸质书那样。

但有一些古老的工具,今天仍有人在学习和使用,甚至在上面花费许多时间。毛笔就是这样一个例子。今天学习掌握毛笔这种“落后的”工具,还有什么意义?其实我们在使用一些“落后的”工具时,主要是在学习工具背后的思想。书法和绘画中蕴含的艺术审美的一般原则,经得起具体工具变迁的考验。甲骨文、金文、石鼓文所包含的对空间构图的理解,仍然值得现代人学习。思想工具是比实物工具更强大的工具。

工具组合使用,形成更强大的新工具。《数学之美》中提到的马尔可夫链虽然是很强大的工具,但我在数学课上没有听老师提到过。这本书中给我印象最深的例子是余弦定理和新闻分类。余弦定理是中学数学,再加上一些不算很难的多维向量的知识,竟然解决了计算机新闻分类这样的难题!

每一种工具的背后,是人们对世界的一种理解。蒸汽机和内燃机背后,是力学的世界。电报、电话、电视、计算机和互联网背后,是信息的世界。数学是抽象的工具,是其他工具背后的工具。每一门学科要成为科学,都少不了数学。也许有一天人们会习惯,用数学工具来分析艺术。数学是一种语言,它源于具体的世界,又高于具体的世界。如果说语言是对世界的认识和描述,如果说数学是一种语言,那么它一定是最接近神的语言。看似毫不相关,却又能描述万事万物。

学习数学有什么用?物理学家费曼当年在大一时提出这个问题,他的师兄建议他转到物理系。今天,这个问题已不成为问题。具有扎实数学功底的人才正进入各行各业,例如金融业。我认识一个出版社的老总,他招应届毕业生有一个条件:数学要好。

工具虽好,关键还要会用。最终要回到掌握先进工具的人。软件算法工程师加上计算机集群,这是目前一流企业必需的装备。正如马克。安德森所说的,各行各业的一流公司,都是软件公司。优秀的软件算法工程师,是人才争夺的焦点。这样,我们就容易理解Google招工程师的要求。

对信息加工处理和传递的能力不断增强,是知识经济的特点。《数学之美》展示了Google如何运用数学和计算机网络,带领我们进入云计算和大数据时代。

知识经济时代的工作,就是在各自的领域中进行科学研究。科学研究要大胆假设,小心求证。科学研究要量化。科学研究要有对比实验。科学研究要有数学模型。科学研究要有田野调查。科学研究要有文献查证。科学研究要有同行评议。《数学之美》向我们介绍了自然语言分析领域的科研方法和过程。

任何一个领域,深入进去都有无数的细节。有兴趣的人不但没被这些细节吓倒,反而会兴致勃勃地研究,从而达到令人仰慕的高度。吴军先生向我们展示了数学和算法中的这些细节,也展示了他所达到的高度。值得我学习。

成语各行各业:泛指所有的人所从事的各种行业。如:邓小平《办好学校,培养干部》:“过去我们想请各行各业开个名单,提高一些人的工资,说了好久,只是停留在口头上,没有实现。”又如:各行各业都出现新气象。

成语兴致勃勃:兴致:兴趣;勃勃:旺盛的样子。形容兴头很足。如:清·李汝珍《镜花缘》第五十六回:“到了郡考,众人以为缁氏必不肯去,谁知他还是兴致勃勃道:‘以天朝之大,岂无看文巨眼。’”又如:全班同学早就集合好,兴致勃勃地向野游地进发了。

数学之美读后感_1467字

在网上看到有人推荐吴军博士的《数学之美》,尽管我从事社会科学研究,但对数学的推崇一直如此,所以买来一读,我的真切体验正如吴军博士在书的后记中所说,把自己“境界提升了一个层次”。

那么,对我而言,到底提升了什么境界呢?

首要的肯定是思想境界。在未读这本书之前,我知道对于这个世界的事件形成的信息集合,人类只有两种方式可以表达,一个是数字,一个是语言。整个实数的集合是无穷个,而且每个数字都是唯一的;整个世界中的事件也是无穷个的,而且每个事件也时独一无二的,这样数学中的数字集合与世界中的事件集合就构成一个一一对应的关系,所以研究数字之间的关系,实际上就是在研究世界中事件之间的关系。语言中的概念和世界中的事件之间也是可以构成一个对应关系的,但问题是,语言中概念的集合是有限的,所以它和数字集合的对应显然只能是部分对应。

计算机科学的发展,人类需要把语言处理成数字,因为计算机只能识别数字信号,所以“语言的数字化”成为计算机产生以来发展最快、而且最有创新性的领域,而许多华人科学家成为了这个领域的顶尖专家,如李开复,吴军博士是卓越的科学家之一。至此我才感到,在计算机主导的世界中,信息化就是数字化,而最难的数字化、也是最有成就的数字化,就是对人类自然语言的数字化,因为人类的信息几乎100%是用语言承载、传播的,计算机要与人对话,变成智能化的机器,首先要解决的就是语言的数字化问题。但我们在电脑上自如地输入文字时、或者拿着手机通话时,我们跟本没有意识到,那些卓越的语言科学家,早已经把我们的语言,转化成数字信号,通过输入、处理、解码的方式,让我们无障碍地联络、工作。

我似乎感到,语言与数字的关系,就是人与自然关系的接口。套用古希腊毕达哥拉斯学派的观点,加上我的理解,即是,数是万物的本原,语言是人的本原!

吴军博士似乎也在提升我对方法的认识境界。科学研究的思考方式,习惯遵循本质、规律、连续性思维,在语言学研究的早期,人类为了让计算机识别语言,采用建立语言规则和语言规则数据库的办法,但最终以失败告终(20世纪50—70年代),70年代后科学家采用了语言统计模型,研究取得了突飞猛进。语言统计模型的胜利,再一次证明了宇宙量子模型的信念,世界是不连续的随机性的粒子构成,人类数千年文明进化出来的语言系统,就是动态的随机概率事件。其二,物理思维再也难逃牛顿的经典本质思维方法,即找寻到百分之百确定性的规律,而信息论思维是研究如何把握不确定性现象,利用概率统计是不二法门。其三,语言本质上就是信息传播,只有从通信模型视角才能真正理解计算机的功能,对语言的编码、处理、传输、解码是计算机的强项,计算机是永远不可能理解语言的意思的。

在《数学之美》中,吴军博士对他的老师、师兄弟、同事的经历、掌故进行了叙述,让我们了解到这些世界一流的学科家、技术精英们的为人处世品质、鲜明个性、科学素养及其管理风格。例如贾里尼克对博士生的严酷淘汰,马库斯对学生的宽宏大度,但我感到他们有一样东西是共同的,就是对科学创造、顶尖人才的识别和器重,甚至是无条件的包容。如此为人的境界才是根本,因为伟大的科学创造毕竟是人做出来的,只有崇高的人文精神之下才能造就顶尖的人才、一流的科学和技术。

观国内的学说界,官风盛行、腐败当道、人情充斥,与这些一流学说群对科学创造的赏识、对个性人才的包容,对科学探索的热诚,可谓相去甚远。

看来,我们只能寄希望于年轻一代,但愿吴博士的《数学之美》,能让我们的学子们,初步体验到科学精英们卓越的才智与情怀。

成语宽宏大度:形容度量大,能容人。如:宋·张齐贤《洛阳jin绅旧闻记·安中令大度》:“中令宽宏大度,不妄喜怒。”又如:他清清楚楚地承认自己的宽宏大度,也清清楚楚地承认自己的嫉妒和褊狭。——老舍《且说屋里》

成语不二法门:不二法门[bù èr fǎ mén],意指佛教用语。不二,不是两个极端;法门,修行入道的门径。“不二法门”指观察事物的道理,要离开相对的两个极端的看法,才能得其实在,所以“不二法门”是指到达绝对真理的方法。语出《维摩诘所说经·卷中·入不二法门品第九》。後用“不二法门”比喻唯一的方法或途径。[源]《维摩诘所说经·卷中·入不二法门品第九》尔时维摩诘谓众菩萨言:“诸仁者,云何菩萨入不二法门,各随所乐说之。”……如是诸菩萨各各说已。问文殊师利,何等是菩萨入不二法门?文殊师利曰:“如我意者,於一切法无言无说,无示无识,离诸问答,是为入不二法门。”於是文殊师利问维摩诘:“我等各自说已,仁者当说何等是菩萨入不二法门。”时维摩诘默然无言。文殊师利叹曰:“善哉!善哉!乃至无有文字语言,是真入不二法门。”[典故]不二,不是两个极端,也就是唯一,绝对的。法门,指修行者所从入的门径。不二法门,就是到达绝对真理的方法。在《维摩诘所说经·卷中》叙述众菩萨阐发各自对“入不二法门”的见解,最後大家问文殊师利菩萨的看法,文殊菩萨认为“不二法门”就是不可用言语说明的,无法用意念去体会的,无法问答的。後来文殊菩萨转问维摩诘的意见,维摩诘默然,一句话不说。文殊菩萨看了有所体会地说:“善哉!善哉!原来真正的不二法门是不需要文字语言来形容的。”後来“不二法门”成为一句成语,除佛经原有意思外,经常是用来指唯一的方法或途径。

《数学之美》读后感_1645字

《数学之美》,一个从事多年工作的谷歌研究员眼中的数学。令我大饱眼福的是,大学里面的数学知识竟能如此广泛运用到了计算机行业中。

在语音识别、翻译,还有密码学领域,有着许多基于概率统计的模型和思想。当然,贝叶斯公式是基础,应用到隐含马尔科夫链模型,神经网络模型。

在搜索中,一些相关性的计算,无不用到了概率的知识。在新闻分类中,用到了一些有关矩阵特征值、相似对角化的知识。当然,在图像处理方面,矩阵变换可谓是无处不在。另外,在识别方面,有一些通信模型,涉及到了信道、误码率、信息熵。

最近刚开学也没什么事,所以就想随便找几本书看一下,但最好别是那种太艰深晦涩的书。8月份一直到现在,吴军写的这本12年5月出版的《数学之美》一直盘踞京东、亚马逊等各大网上商城科技类图书的榜首,当然,还有早些时候出版的《浪潮之巅》也排在很靠前的位置。心想市场的力量应该能帮我挑出好书吧,于是就从图书馆借了一本来,一直到今天晚上把它给看完了。

因此想写一点东西来总结、反思一下,反正刚开完班会也没什么事干。

写在前面的建议:如果你不讨厌数学的话,强烈推荐这本书,网上也可以下到电子版,不过阅读感觉上还是很不一样的。

废话就不多说了,《数学之美》其实是一本科普类的读物,所面向的是接受过普通高等教育的人,完全不需要在特定领域有很深的造诣就可以看懂,大概懂一点线性代数、概率统计、组合数学、信息论、计算机算法、模式识别最好(虽然列举了这么多,其实有些不懂也没关系……),所以尤其适合信科的人看。内容大部分是和人工智能、计算机相关的,这并非我所学的专业,但作者比较擅长将看似复杂的原理用简明的语言表达出来,所以可读性还是很好的。

吴军是清华大学毕业的,之前任职于Google,后来到了腾讯,这些文章都是发表在Google黑板报上的,后来经过了重写,所以网上下载的和书本内容有所差异。由于吴军本人是研究自然语言处理和语音识别的,所以统计语言模型的东西可能会多一点,不过我觉得这丝毫不妨碍全书数学之美的展现……感觉收获还是挺多的,知识上的有一些,但更多还是思维方式上的。作者举了很多例子试图让人明白很多看似复杂的高科技背后,基本原理其实是出乎意料简单的(当然,必须承认第一个想到这些方法的人还是非常了不起的……)。比如高准确率的机器翻译,看上去好像是计算机能够理解各国语言,隐藏在背后的却是很多具有大学理科学历的人都非常清楚的统计模型和概率模型;再比如拼音输入法的数学原理,早期的研究主要集中在缩短平均编码长度,比如曾经流行一时的五笔输入法,而现今真正实用的输入法却是有很多信息冗余、编码长度比较长的拼音输入法,作者从信息论和市场的角度做了简单的阐述;又比如新闻的自动分类,许多非IT领域的人可能会认为计算机可以读懂新闻并进行分类,而实际上只是特征向量的抽取、多维空间中向量夹角的计算,非常非常简单,但凡学过一点线性代数的人绝对是一看就懂的……当然,完美的实现还需要考虑很多细节和现实的情况,但这并不是这本书所关注的地方,数学之美在于其简洁而不是繁琐。

除了对于具体信息技术的剖析之外,作者还花了很大篇幅来讲一些杰出人士的成长过程,特别是把这些人的成长经历和中国学生的成长经历作对比。虽然作者并没有明说,但字里行间多少流露出对于中国高等教育以及很多中国企业的批评,一是教育的功利性,缺乏宽松的独立思考的环境,即使学了一堆理论也难有用武之地,自然也就缺乏创新性的成果;二是中国企业的短视,大部分都不舍得在新框架开发上投资,而是坐享学术界和国外企业的研究成果。

总结一下呢,《数学之美》事实上不能带给你编程能力的提升,也没法让人的数学水平有显着的提升,但它在很大程度上让你跳出教科书式的繁琐细节的束缚,能够从更宏观的角度来思考信息世界背后的数学引擎的运行原理,让人明白看似很高级、复杂的东西背后其实并不如我们所想象的那样复杂,而我们所学的“枯燥”的数学真的可以“四两拨千斤”,改变亿万人的生活。

成语了不起:极好或令人钦佩的,不平凡,优点突出。如:清·名教中人《好逑传》第七回:“本县看她处心行事,竟是一个了不起的大豪杰,断不肯等闲失身。”又如:毛泽东是中国历史上了不起的大人物。

成语用武之地:形容地形险要,利于作战的地方。比喻可以施展自己才能的地方或机会。如:《晋书·姚襄载记》:“洛阳虽小,山河四塞,亦是用武之地。”又如:你自己先把根基弄坏了,将来就有用武之地,也不能做个大英雄,岂不是自暴自弃?——冰心《两个家庭》

本文标签: 读后感作文  名著读后感  

相关推荐

猜你喜欢

大家正在看