半导体材料和器件的制备,需要高质量的高纯水,要求低TOC(<5ppb)、低细菌内毒素(<0.03EU/ml),目前电子行业已广泛采用反渗透技术,下面就如何选用更合理的反渗透膜,简述于下:
众所周知,反渗透(RO)是一种在压力驱动下,借助于半透膜的选择截流作用将溶液中的溶质与溶剂分开,无论低压复合膜[1-2]或超低压复合膜[3-5],都是以水的透过速率大小、脱盐率高低来衡量膜的好坏,而水的透过速率即水通量的大小与驱动压力成正比,如能达到一定的水通量时,所需的驱动压力越低,则不仅降低能耗,同时也降低泵、压力容器及管材等设备投资。
本文介绍了ESPA超低压膜主要特点。同时还列举了超低压ESPA膜和低压CPA2或NTR-759膜与醋酸纤维CA膜在操作压力、透过水量、脱盐率方面的比较,研究了各种方法和各种onclick="g('反渗透膜');">反渗透膜对TOC和细菌内毒素的去除效果比较,并成功的应用在空间材料制备用水、高纯化学试剂生产用水、机车电瓶用水及建材制板用水上,取得了很好的效果。
一、 TOC、细菌、细菌内毒素、颗粒对大规模集成电路的影响
随着电子工业的发展对高纯水提出了越来越高的要求。例如[6],制作16K位DRAM允许水中TOC(总有机碳)为500ppb、金属离子为1ppb、≥0.2μm的颗粒为100个/毫升;而制作16M位DRAM时,则要求TOC<5ppb、金属离子<0.2ppb、水中≥0.1μm颗粒数为0.6个/升。
1.1 TOC,细菌及细菌内毒素对大规模集成电路的影响。
1.2 DRAM对颗粒和TOC的要求
天然水、自来水等各种水源中都存在着热原。目前比较一致的认识是热原是指多糖类物质[7],也就是细菌内毒素。细菌内毒素是革兰氏阴性菌的细胞壁外壁层上的特有结构——脂多糖,所以,哪里有细菌,哪里就有细菌内毒素。其结构为单个粒子,其分子量在10000~20000之间范围内,体积为1~50μm,细菌内毒素在水中可以形成比较大的成团密集体,造成颗粒性污染。细菌内毒素含磷多糖体75%,磷脂12~15%及有机磷酸盐6~7%,造成TOC污染,由于含很高的磷,在硅中是N型杂质,贡献导电电子,形成不可控制的污染,严重的影响器件的性能和成品率[8]。
由于细菌及细菌内毒素都会产生颗粒性污染及TOC的污染,由图1、图2明显看出颗粒性污染及TOC的污染对大规模集成电路的影响,因此在兆位电路用水中对TOC、细菌及细菌内毒素的含量要严格控制。
二、超低压卷式复合膜的主要特点
2.1 与CA膜和低压复合膜相比,ESPA、ES10、ES20膜达到同样产水量时所需的操作压力大为降低,换句话说在相同的操作压力下其产水量高出其它膜,见图3。
图3 部分卷式反渗透膜性能比较
由图1看出在压力一定时ESPA,ES20膜的产水量是CPA2或NTR-759HR,BW30膜产水量的一倍,而CPA2或NTR-759HR,BW30膜的产水量是CA膜的5倍,换句话说若同样的产水量,则所需的操作压力要求低很多。
2.2 低压和超低压膜,如CPA2,NTR-759膜和ESPA膜,脱除水中二氧化硅能力,均在98%以上,标准条件下二氧化硅的脱除率见图4。
图4 不同压力时两种膜的脱硅效果
[测试条件] 进水溶液:SiO2浓度41ppm,温度:18℃
2.3 化学稳定性,以ESPA膜,CPA2或NTR-759膜的耐氯性为例,如图5所示。
图5 两种膜的耐氯性能
[通水条件] 进水压力:1.0MPa;供给液游离氯浓度:100ppm;供给液pH=6
[测试条件] 进水溶液:0.05%食盐水;进水压力:0.75MPa;pH值:6.5;温度:25℃
由于ESPA膜没有改变复合膜材料的化学成分,因而保持了复合膜的所有优点。其化学稳定性和脱盐率均与低压复合膜相同。
三、用一级反渗透RO、双级RO、蒸馏法、紫外法、活性碳吸附法、离子交换法、超声法等除去水中的TOC和细菌内毒素的比较
1.1 用RO法,蒸馏法,185紫外法,除去TOC和细菌内毒素,见表1。
表1 用RO法,蒸馏法,185紫外法,除去TOC和细菌内毒素的比较
|