BAF 工艺类型和操作方式有多种,各具特点,但其基本原理是一致的。曝气生物滤池处理污水的原理是反应器内填料上所附生物膜中微生物氧化分解作用,填料及生物膜的吸附阻留作用和沿水流方向形成的食物链分级捕食作用以及生物膜内部微环境和厌氧段的反硝化作用。
BAF 水流流向主要分为下向流和上向流,其中下向流以OTV 公司的BIOCARBONE 工艺为代表;上向流以OTV 公司的BIOSTYR 工艺为代表。BIOSTYR 和BIOCARBONE 工艺示意图见图1 。
随着过滤的进行,由于填料表面新产生的生物量越来越多,截留的SS 不断增加,在开始阶段水头损失增加缓慢,当固体物质积累达到一定程度,堵塞滤层的上表面,并且阻止气泡的释放,将会导致水头损失很快达到极限,此时应立即进入反冲洗再生,以去除滤床内过量的生物膜及SS ,恢复处理能力。
反冲洗采用气水联合反冲,反冲洗水为经处理后达标水,反冲空气来自于底部单独的反冲气管。反冲时关闭进水和工艺空气,水气交替单独反冲,最后用水漂洗。滤层有轻微的膨胀,在气水对填料的流体冲刷和填料间相互摩擦下,老化的生物膜和被截留的SS 与填料分离,冲洗下来的生物膜及SS 在漂洗中被冲出滤池,反冲洗污泥回流至预处理部分。由于正常过滤和反冲时水流方向相反,使填料层顶部的高浓度污泥不经过整个滤床,而是以最快的速度离开滤池,这对保证滤池的出水是有利的。
在BIOSTYR 工艺中,经预处理的污水与经硝化的滤池出水按一定回流比混合后进入滤池底部。在滤层中进行曝气,曝气系统将滤池分为好氧和缺氧两部分。在缺氧区,一方面反硝化菌利用进水中的有机物作为碳源,将滤池中的NO3 - N 转化为N2 ,实现反硝化。另一方面,填料上的微生物利用进水中的溶解氧和反硝化产生的氧降解BOD ,同时,一部分SS 被吸附截留在滤床内,这样便减轻了好氧段的固体负荷。经过缺氧段处理的污水然后进入好氧段,好氧段的微生物利用从气泡转移到水中的溶解氧进一步降解BOD ,硝化菌将NH3 - N 氧化为NO3 - N ,滤床继续截留在缺氧段没有被去除的SS。流出滤层的水经上部滤头排出滤池,出水按需求分为: (1) 排出处理系统; (2) 按回流比与原水混合进行反硝化; (3) 用作反冲洗水。随着过滤的进行,滤层中新产生的生物膜和SS 积累不断增加,水头损失与时间成线性正相关。当水头损失达到极限水头损失时,应及时进入反冲洗以恢复滤池的处理能力。由于在BIOSTYR 工艺中没有形成表面堵塞层,使得BIOSTYR 工艺比BIOCARBONE 工艺运行时间要长。
反冲时也为气水交替反冲,反冲洗水即为贮存在滤池顶部的达标排放水,反冲空气来自底部的反冲洗气管,反冲水自上而下。其反冲过程基本类似于BIOCARBONE 工艺。
两者的反冲过程没有太多的理论依据,但必须把握以下原则:既要恢复过滤能力,又要保证填料表面仍附着有足够的生物体,使滤池满足下一周期净化处理要求。从BIOCARBONE 到BIOSTYR 工艺的运用是一个逐步发展的过程,该技术的关键是采用了一种特殊的填料(密度为0. 8 g/ cm3 左右的有机填料) 。相比而言,BIOSTYR 工艺有如下优点: (1) 重力流反冲洗无需反冲泵,节省了动力; (2) 滤头布置在滤池顶部,与处理水接触不易堵塞,便于更换; (3) 硝化/ 反硝化在同一池内完成。(东南大学土木学院)