摘要:介绍污泥处理单元与处理处置途径,从物质和能量流角度对不同工艺组合加以分析并结合中国目前情况加以讨论。
关键词:污泥;处理;能量流;物质流;优化
1背景
关于污泥处理处置不同对策的讨论与争议通常远比对污水处理工艺的探讨要激烈和复杂得多。除了商家利益和设计、决策者所处的部门局限等主观因素外,污泥处理处置不仅涉及多个环节而且在短期和长期规划、最终去向等方面与很多边界条件和政策导向相关。
通过对不同处理手段的组合、相应的物质和能量流分析,并对投资和运行费用进行比较,常可将问题和讨论更客观化。
本文根据一些实际工程经验的总结对不同工艺组合的物质流和能量流加以分析并结合中国目前情况加以讨论。
2 工艺组合
图1简单综合了欧洲较为常用的污泥 处理、处置或利用的途径。所涉及的单元操作将在下节分别介绍。
3 单元操作及物质与能量流特征
3.1 生物稳定化
通过稳定化处理,污泥被进一步无机化、减量化,而且脱水性能得到改善。处理后的污泥,由于降低了产气潜能从而可以更好地贮运。出于简化工艺,欧洲小型处理厂(500~20,000人口规模)有较多采用好氧工艺,而大一些的污水处理厂考虑能量回收和运行费用的优化则采用厌氧工艺1。
采用焚烧处理手段时,消化作为一个中间单元操作来说所要达到的目的就简化为减量、便于中间储存?a href='http://www.baiven.com/baike/225/315630.html' target='_blank' style='color:#136ec2'>透纳苹低阉阅埽劣谙钠渌δ埽热缥勰嘀杏谢锖渴欠穸苑偕沼欣约敖ㄔ?a href='http://www.baiven.com/baike/222/246202.html' target='_blank' style='color:#136ec2'>消化系统的投资对污泥处理系统总的影响,则要与其它单元操作综合起来统一考虑。
在厌氧消化污泥的过程中,一部分干物质转化成沼气,可用于发电、制备热水或低压蒸气、作为燃料供给发酵系统保温或作为污泥干燥和污泥焚烧时的辅助燃料。
厌氧消化过程所需要的能量主要是污泥输送和搅拌的电能,以及污泥升温及消化池的保温。目前中国对消化设施运行数据的总结和报道尚较少。图2是根据德国工程数据归纳的结果2。计算中假设处理前干污泥中灼烧挥发份占65%,挥发份的热值是22000KJ/kg,消化后灼烧挥发份减少50%。重力浓缩污泥的浓度、消化温度均会对相关数据产生影响。
3.2 机械脱水与干燥
机械脱水的效率在没有仔细考虑污泥处置和片面强调一次性投资的节省时常常被忽视,绝大多数情况下,机械脱水脱水率的增加对后续处理处置费用的减小至关重要。
污泥可被部分干燥或全部干燥。干物质含量超过92%的污泥可视为无生物活性,并可长期储存。特别是对于规模较大的污水处理厂,干燥所需能量的来源常常是干燥应用的最大制约。德国上世纪90年代约有120多家污泥干燥厂,这些装置大约可处理市政污水处理设施污泥产生量的10%,单体处理规模远小于中国污水处理厂平均规模。由于严格的排放标准限制,实际常采用间接热交换工艺。
图3给出污泥干物质中不同挥发性固体物含量与污泥干物质含量及污泥低位热值的相关关系。计算中假设灼烧挥发份的热值为22,000KJ/Kg,图中还标出了污泥干燥时不同初始干物质含量及干燥后干物质含量与干燥所需最小理论热量。
污泥的机械脱水是进一步处理的重要前提。如果将焚烧或其它热处理作为最终处理手段,则要求机械脱水效率尽可能高,因为机械脱水每处理一吨含水污泥需要1—2kwh 的能量(电能),而干燥时不仅需要一部分电能,而且需要大量的热能用于水的蒸发。图4概括了污泥脱水、干燥的基本能量流2。
特别需要注意的是干燥过程中被蒸发出来的水分含有较高浓度的氨氮。通常的做法是将冷凝下来的水排到污水处理厂进行处理,从而在不同程度上增加了进水的氨氮负荷。
3.4 杀菌与固化
利用氧化钙和添加其他材料或工业废物,如水泥、粘土、石粉、飞灰和烟气净化的粉尘等对脱水污泥进行杀菌和固化处理西方国家在上世纪六、七十年代作了较多的应用研究,包括处理后的填埋性能与工艺。虽然近20多年来这一处理手段在专家学者的视野中几乎消失,但不能忘记的是即使在西欧的发达国家尚有较大比例的污泥以填埋作为最终处置手段,而填埋前通常经过杀菌和固化处理。
除了卫生学上的意义外,氧化钙与含水污泥混合,在与水分子反应的同时放热并使一部分水分蒸发。加入氧化钙后污泥含水率降低、硬度增加。少量的铝盐和(或)磷酸盐的添加可以进一步增加污泥的硬度。
该操作单元的另一个重要作用在于污泥的改性:无形状的和块状的污泥在适宜的混合器中进行固化处理后形成流动性良好的颗粒,由于去除了生物活性从而易于堆积、储存和运输。
这一单元操作的关键在于混合。原始的处理装置是在蜗杆输送机中加入钙粉,因为物料只经过推送过程所以混合不均匀(耗钙粉多、混合不均匀,效果差)同时难以实现污泥性状的改善。现代的混合设备采用混合器中特制的绞刀使污泥破碎并流态化,处理后的物料(污泥)变成流动性良好的颗粒。这种形式的处理在德国得到普遍应用。
图5是一个简化的污泥固化的框算。
该处理单元的作用主要为以下几点:
(1) 单组分或与垃圾混合填埋的预处理;
(2) 酸性土壤的改良;
(3) 污泥热干燥的替代方案;
(4) 污泥焚烧炉或工业窑炉焚烧的预处理(加入的氧化钙起一定的脱硫剂作用);
(5) 改善储存和运输。
3.5农业利用和土壤改良
污泥农业利用或用作土壤改良有几种不同的形式,如在极小型污水处理厂经生物稳定化处理后的浓缩污泥直接农用,经机械或加热脱水后的污泥农用、堆肥等。从物质流角度看,污泥富含营养盐,回归农田可以使农业、食品、废物构成良性循环。遗憾的是,现代城市混合排污系统使得污泥成分复杂,因此农用在安全性方面有一定的局限,而用于绿化和土壤改良虽然更为适宜,但由于政策和组织管理方面的原因难以实施。
3.6污泥焚烧与烟气净化
焚烧分为污泥单组分焚烧和混合焚烧。前者最主要的工艺形式是静态流化床。混合焚烧包括:
(1) 垃圾焚烧厂在垃圾中混入少量污泥;
(2) 电厂混入少量污泥;
(3) 工业窑炉(如水泥厂)等。
由于垃圾焚烧厂烟气的排放要求与污泥焚烧一样,所要考虑的因素更多是对策、工艺和费用的优化,比如垃圾焚烧炉排炉在加入过量污泥后,过量的污泥会通过炉排泄漏,导致焚烧不完全,以及污泥会增加烟气中的飞灰从而超过垃圾焚烧炉及锅炉设计的允许值等。争议最大的是电厂和工业窑炉的混合焚烧,因为电厂和工业窑炉排放标准较低,污泥中的污染物混入后被稀释,而重金属、二恶英的监测又很复杂并难以监控。这个议题较大,限于篇幅本文不再展开。
所谓焚烧过程能够自燃,并不是单纯指焚烧过程不需辅助燃料,而同时包括:必须要达到对污染物,主要是有机污染物的充分消除。这里不仅指气相(烟气),而且指固相(飞灰及炉渣),同时达到系统残余固体物的高度稳定化。在设计和实施污泥焚烧处理时需优化空气预热系统、能量回收系统和辅助燃料系统。焚烧过程能否够自燃除了与污泥本身(含水率,干物质的热值)有关外,还与设计的燃烧空气过剩系数、空气预热温度有关。
焚烧后污泥中的化学能转换成烟气中的热能,其中一部分随热回收后的烟气排放而损失掉。热能回收后的主要利用途径为
(1) 燃烧空气的预热;
(2) 污泥预干化(提高热值);
(3) 发电或输出热水、蒸汽。
前两项完全是焚烧系统的“内耗”。由于烟气组分比常规电厂要复杂,所以一般锅炉蒸汽压力不超过50bar,以发电为最大目的设计,蒸汽热能变成电能的效率约为25%,远低于电厂。
焚烧和烟气净化消耗的电能主要是燃烧风机和烟气引风机。
4以焚烧为最终处理的工艺组合与比较
4.1工艺组合
表1列出几个以焚烧为最终处理的工艺组合。以下为以实际工程为基础的几个方案比较,重点是物质流与能量流的量化,由此可进一步确认设施的复杂程度、大小与费用。
计算中采用统一的基数:
(1) 原始人均污泥产生量为每人每天80g;
(2) 污泥的干物质中灼烧挥发物含量为65%;
(3) 灼烧挥发物中有50%可通过厌氧消化得到降解;
(4) 灼烧挥发物的低位热值为22,000kJ/Kg。
表1: 几个以焚烧为最终处理的工艺组合
| | |