[拼音]:cunchu xitong
[外文]:memory system
计算机中由存放程序和数据的各种存储设备、控制部件和管理信息调度的设备(硬件)和算法(软件)所组成的系统。计算机的主存储器不能同时满足存取速度快、存储容量大、成本低的要求,在计算机中必须有速度由慢到快、容量由大到小的多级层次存储器,以最优的控制调度算法和合理的成本,构成具有可接受性能的存储系统。
计算机最初采用串行的延迟线存储器,不久又用磁鼓存储器。50年代中期,主要使用磁芯存储器作为主存。60年代中期以来,半导体存储器已取代磁芯存储器。在逻辑结构上,并行存储和从属存储器技术的采用提高了主存的供数速度,缓和了主存和高速的中央处理器速度不匹配的矛盾。1968年IBM-360/85最早采用了高速缓冲存储器-主存储器结构。高速缓冲存储器的存取周期与中央处理器主频周期一样,由硬件自动调度高速缓冲存储器与主存储器之间信息的传递,使中央处理器对主存储器的绝大部分存取操作,可以在中央处理器和高速缓冲存储器之间进行。
虚拟存储器源出于英国 ATLAS计算机的一级存储器概念。这种系统的主存为16千字的磁芯存储器,但中央处理器可用20位逻辑地址对主存寻址。到1970年,美国RCA公司研究成功虚拟存储器系统。IBM公司于1972年在IBM370系统上全面采用了虚拟存储技术。
存储层次
在计算机系统中存储层次可分为高速缓冲存储器、主存储器、辅助存储器三级。高速缓冲存储器用来改善主存储器与中央处理器的速度匹配问题。辅助存储器用于扩大存储空间。
存储映像
完成逻辑地址空间和物理地址空间之间的变换,并且合理地管理存储系统资源。逻辑地址是指程序员编制的程序地址,由它构成逻辑地址空间。程序主存储器中的实际地址称为物理地址,由它构成物理地址空间。存储映像基本上分为两种情况:一种是逻辑地址空间小于物理地址空间,映像要求可以访问所有的物理存储器;另一种是逻辑地址空间大于物理地址空间,映像要确定每个逻辑地址实际所对应的物理地址。
存储变换最简单的方法是采用基址编址。基址编址是将基址寄存器中的内容(程序基点)与逻辑地址相加,形成物理地址,然后访问存储器。
存储保护
近代计算机系统资源为一同执行的多个用户程序所共享。就主存来说,它同时存有多个用户的程序和系统软件。为使系统正常工作,必须防止由于一个用户程序出错而破坏同时存在主存内的系统软件或其他用户的程序,还须防止一个用户程序不合法地访问并非分配给它的主存区域。因此,存储保护是多道程序和多处理机系统必不可少的部分。
主存保护是存储保护的重要环节。主存保护一般有存储区域保护和访问方式保护。存储区域保护可采用界限寄存器方式,由系统软件经特权指令给定上、下界寄存器内容,从而划定每个用户程序的区域,禁止越界访问。
界限寄存器方式只适用于每个用户程序占用一个或几个连续的主存区域,而对于虚拟存储器系统,由于一个用户的各页离散地分布于主存内,就需要采用键式保护和环状保护等方式。键式保护是由操作系统为每个存储页面规定存储键,存取存储器操作带有访问键,当两键符合时才允许执行存取操作,从而保护别的程序区域不被侵犯,环状保护是把系统程序和用户程序按重要性分层,称为环,对每个环都规定访问它的级别,违反规定的存取操作是非法的,以此实现对正在执行的程序的保护。
由于科学计算和数据处理对存储系统的要求越来越高,需要不断改进已有的存储技术,研究新型的存储介质,改善存储系统的结构和管理。大规模集成电路和磁盘依然是主要的存储介质。利用新型材料制做大规模集成电路、大容量的联想存储器可大大提高速度,对于计算机系统和软件都会发生影响。磁盘技术、光盘技术、约瑟夫逊结器件,以至研究新的存储模型,都是计算机存储系统发展的研究课题。