[拼音]:guangxian qijian
[外文]:optical fiber device
光纤传输系统中对光路起转换、连接和控制功能的单元,又称光无源器件。主要有光连接器、光耦合器、光开关、光衰减器、复用器和解复用器等。1970年多模光纤取得突破性进展,光纤开始应用于通信技术,随之出现了光连接器。70年代末期,单模光纤出现并用于传输系统之后,相应地研制出单模光纤器件和平面型光纤器件,以适应长波长单模光纤传输系统的需要。光纤器件已有很多品种。光纤器件的基本理论和相关技术的研究受到人们重视,已经成为光电器件的一个独特的门类(见光纤光缆)。
基本参数
光纤器件有两个基本参数,即插入损耗和隔离度。光纤传输系统要求插入损耗小、隔离度大。
插入损耗
光纤器件插入光纤传输系统所引起的光功率损耗。通常用器件输出功率与输入功率 Pi之比的对数值来表示,即
对于多端输出的器件,应是各输出端功率之和。产生插入损耗的主要原因是器件中光的漏泄、辐射、散射和像差等。插入损耗通常采用截断法、临时接点法(或两点法)来测量,测量在稳态模式分布的条件下进行。
隔离度
某些光纤元件插入光纤传输系统后,引起光从一个光路漏泄到另一个光路,常称串音。通常用漏泄到另一个光路的功率P1与主光路输入功率Pi之比的对数值来表示:
产生串音的主要原因是器件中光纤端面的菲涅尔反射、各光路之间的包层厚度不当以及对漏泄和辐射模的吸收性能不佳等。
结构
光纤器件有光纤型、棒透镜型和平面型等结构。光纤型器件是光纤经过研磨抛光、热熔拉锥或镀膜等工艺制成的。加工较为简便,无需特殊材料,因而成本较低。棒透镜型器件是用棒透镜或配以必要的其他微光学元件制成。棒透镜是横断面折射率呈抛物型分布、对传输光束有自聚焦作用的圆柱形透镜,又称自聚焦透镜(图1)。这种透镜的特点是焦距小、数值孔径大、像差小、加工和连接方便、调准容易。由两根长度为1/4节距的棒透镜所构成的准直-聚焦平行光路适用于多种光纤器件。平面型器件以铌酸锂等作衬底材料,用集成电路工艺制成。其特点是体积小、抗外界干扰性能好,是集成光学器件的一种初级形式,又称薄膜光波导无源器件。
光纤器件种类
光纤器件按功能分类,有光连接器、光耦合器、光开关、波分复用器和波分解复用器、光衰减器、光环行器、光隔离器和光调制器等。
光连接器
实现光纤与光纤或光纤与其他器件光学连接的器件。它的主要参数是插入损耗。光连接器品种甚多,按插孔的结构型式分,有O型、C型和V型等;按光纤种类和芯数分,有多模、单模光纤连接器,多芯、单芯光缆连接器等;按应用场合分,有通用式、现场装配式、密封式和穿墙式等。通用的多模单芯光缆连接器的插入损耗一般为 0.5~1分贝(图2)。单模光纤连接器的最低插入损耗可达 0.3分贝。
光定向耦合器
使光路之间按比例实现能量耦合,且分光路线与传输方向有关,可作成三端口或四端口器件。根据结构和工艺的不同,可分为拼接式、拉锥式、棱镜式、平面式等(图3)。光定向耦合器的主要参数是插入损耗、分光比和隔离度。主要用于单线双向传输及数据网等。
星形耦合器
使一个或几个光路中的光能耦合到同一边(或另一边)一个或几个光路中的近似星形器件。将能量耦合到同一边光路的称为反射式星形耦合器;将能量耦合到另一边光路的称非反射式星形耦合器。按其对称性又可分为1×n型和n×n型等。按结构与工艺的不同,星形耦合器可分为拉锥式、搅模棒式等(图4)。星形耦合器的主要参数与光定向耦合器相同。它主要用于星形光纤网络。
T 形耦合器
使两个端机接到一个主传输线路上去的器件。主要结构和参数与星形耦合器相同,主要用于母线网络。
光开关
使一个或几个光路中的光能接通、切断或转换到另一个或几个光路中去的器件。按转换型式可分为1×n型和n×n型(矩阵开关);按转换机理可分为机械式和折射率式(图5)。光开关的主要参数是插入损耗、隔离度、重复性、转换时间和寿命。它主要用于光路的切换。
波分复用器
使两个或两个以上不同波长的光载波共用一个光路的器件。按色散元件分有棱镜式、光栅式和干涉模式等。其主要参数是插入损耗、隔离度等。它主要用于单线双向传输和光纤网络传输。
波分解复用器
使共用一个光路的不同波长的多个光载波分到各自光路中去的器件。其主要参数、结构和用途均与波分复用器相同。
光衰减器
使光路的光能按一定比例衰减的器件。按衰减量的可调性可分为固定式、分级可调式和连续可调式(图6)。其主要参数是衰减量及其精度。它主要用于调整中继区间的损耗、评价光纤传输系统损耗和校正光功率计等。
光纤器件除应用于光纤通信外,还可应用于非通信领域,如传感技术、数据处理和计算技术等。特别是光纤传感器尤其受到人们注意,它的进展将会促进光纤器件的发展。此外为了适应单模光纤传输系统的需要,光纤器件将在平面型器件的基础上向混合集成光路方向发展,对光纤传输系统会产生重要的影响。
- 参考书目
- 玻恩和沃耳夫著,杨葭荪等译:《光学原理》,科学出版社,北京,1978。(M.Born and E.Wolf,Principles of Optics,Pergamon Press,Oxford,1975.)
- A.Yariv, Introduction to Optical Electronics,Holt Rinehart and Winston,New York,1976.